Determining individual mineral contributions to U(VI)adsorption in a contaminated aquifer sediment:A fluorescence spectroscopy study
نویسندگان
چکیده
The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5 10 7 and 5 10 6 mol L 1 that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite California clinochlore > quartz Michigan chlorite > illite > montmorillonite. Both time-resolved spectra and asynchronous twodimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparison with literature data suggested that U(VI) exist primarily as inner-sphere complexes with surface silanol groups on quartz and as surface U(VI) tricarbonate complexes on phyllosilicates. Published by Elsevier Ltd.
منابع مشابه
Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction.
Previous field studies on in situ bioremediation of uranium-contaminated groundwater in an aquifer in Rifle, Colorado identified two distinct phases following the addition of acetate to stimulate microbial respiration. In phase I, Geobacter species are the predominant organisms, Fe(III) is reduced, and microbial reduction of soluble U(VI) to insoluble U(IV) removes uranium from the groundwater....
متن کاملTransient groundwater chemistry near a river: Effects on U(VI)transport in laboratory column experiments
[1] In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity an...
متن کاملUranium Isotopic Fractionation Induced by U(VI) Adsorption onto Common Aquifer Minerals.
Uranium groundwater contamination due to U mining and processing affects numerous sites globally. Bioreduction of soluble, mobile U(VI) to U(IV)-bearing solids is potentially a very effective remediation strategy. Uranium isotopes (238U/235U) have been utilized to track the progress of microbial reduction, with laboratory and field studies finding a ∼1‰ isotopic fractionation, with the U(IV) pr...
متن کاملKinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment.
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate co...
متن کاملThe effect of calcium on aqueous uranium(VI) speciationand adsorption to ferrihydrite and quartz
Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2(CO3)3 2 and Ca2UO2(CO3)3 (aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption ...
متن کامل